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Purpose: Vocal roughness is often present in many voice disorders but the
assessment of roughness mainly depends on the subjective auditory-perceptual
evaluation and lacks acoustic correlates. This study aimed to apply the concept
of roughness in general sound quality perception to vocal roughness assess-
ment and to characterize the relationship between vocal roughness and tempo-
ral envelop fluctuation measures obtained from an auditory model.
Method: Ten /ɑ/ recordings with a wide range of roughness were selected from
an existing database. Ten listeners rated the roughness of the recordings in a
single-variable matching task. Temporal envelope fluctuations of the recordings
were analyzed with an auditory processing model of amplitude modulation that
utilizes a modulation filterbank of different modulation frequencies. Pitch
strength and the smoothed cepstral peak prominence were also obtained for
comparison.
Results: Individual simple regression models yielded envelope standard devia-
tion from a modulation filter with a low center frequency (64.3 Hz) as a statisti-
cally significant predictor of vocal roughness with a strong coefficient of deter-
mination (r2 = .80). Pitch strength and CPPS were not significant predictors of
roughness.
Conclusion: This result supports the possible utility of envelope fluctuation
measures from an auditory model as objective correlates of vocal roughness.
Voice disorders typically lead to perceptual changes
in voice known as dysphonia. As such, assessment of voice
quality is an integral component of a complete and accu-
rate evaluation of dysphonia and repeated assessments of
voice quality often serve as essential outcome measures
for the treatment of voice disorders (Behrman, 2005;
Carding et al., 2009). The most common assessment of
voice quality is a subjective auditory-perceptual evaluation
performed by a speech-language pathologist specializing in
clinical voice assessment. Components of the perceptual
voice assessment include overall dysphonia severity and
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parsing overall dysphonia into primary voice quality
dimensions of breathiness, roughness, and strain as well as
other dimensions such as nasality, pitch, and loudness
(Hirano, 1981; Kempster et al., 2009). Research has sought
to develop objective acoustic measures that can quantify
voice quality with the hopes of improving accuracy, reli-
ability, and efficiency of assessment and outcomes mea-
sures. One such measure is the cepstral peak prominence
(CPP; Heman-Ackah et al., 2003), which that serves as a
constituent component of multivariate acoustic models such
as Acoustic Voice Quality Index (Maryn et al., 2010) and
Cepstral Spectral Index of Dysphonia (Awan et al., 2013).
These multivariate acoustic models yield a strong correla-
tion with perceptual ratings of overall dysphonia severity
(Awan et al., 2013; Maryn et al., 2010). However, strong
acoustic predictors of breathy, rough, and strain voice qual-
ities are still lacking.
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Vocal roughness is manifest in various voice pathol-
ogies (e.g., vocal fold nodules, polyps, and paralysis) and
is typically defined as perceived irregularity in vocal fold
vibration (Hirano, 1981; Kempster et al., 2009). Because
of the irregularity perceived in rough voices, cycle-by-cycle
fluctuations of frequency and amplitude such as jitter and
shimmer have been investigated as possible acoustic corre-
lates of perceived roughness; however, the relationship
between perturbation measures and perceived roughness
was found to be mostly weak to moderate (|r| = .29–.71;
Barsties v. Latoszek, Maryn, et al., 2018; Bhuta et al.,
2004). Perturbation measures require accurate fundamen-
tal frequency (fo) estimation, which is difficult for many
dysphonic voices (Mehta & Hillman, 2008), and as such,
they are no longer recommended as a clinical measure of
voice quality (Patel et al., 2018). Spectral noise measures
and CPP also have been investigated as possible correlates
of roughness, but their relationships with roughness often
are also weak (|r| = .02–.43; Barsties v. Latoszek, De Bodt,
et al., 2018; Heman-Ackah et al., 2002). In an effort to sep-
arate breathy from rough voices in dysphonic and normo-
phonic adults, Awan and Awan (2020) used a variation in
the CPP known as the CPPHigh-Low with which they consid-
ered CPP computed across high- versus low-quefrency por-
tions of the cepstrum. That measure was successful at clas-
sifying the voices into separate qualities. However, no mea-
sure to date has accurately captured roughness over the
range considered “normal” to “extremely rough.”

To develop a better objective correlate of vocal
roughness, here, we consider the possibility that the acous-
tic correlate of roughness is analogous to a change in the
temporal envelope of a waveform. The auditory percept
of roughness has been associated with both frequency
modulation and amplitude modulation. Indeed, when the
range of frequency modulation exceeds upper or lower fil-
ter cutoff, the resulting output contains amplitude modu-
lation. The linkage between auditory perception of rough-
ness and amplitude modulation frequency and depth was
summarized by Fastl and Zwicker (2007). They investi-
gated amplitude modulation of pure tones and broadband
noise and showed that the roughness percept was associ-
ated with relatively low modulation frequencies, ranging
from 15 to 300 Hz. For pure tones of 125 and 250 Hz,
similar to the human vocal fo, perceived roughness was
maximum when the modulation frequencies were between
approximately 25 and 50 Hz. For a 1000 Hz tone and
broadband noise, perceived roughness was maximum for a
modulation frequency of approximately 70 Hz. In a system-
atic investigation of the relationship between amplitude
modulation and vocal roughness, we applied amplitude
modulation to voices that were judged by expert listeners to
have no perceived roughness. Following amplitude modula-
tion, the voices were judged to have maximum perceived
roughness when the frequency of the applied amplitude
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modulation was between 20 and 50 Hz (Eddins et al.,
2015). Similarly, applying amplitude modulation to a syn-
thetic speech-shaped waveform, and varying the amplitude
modulation depth, has served well as a comparison sound
in a single-variable matching task for vocal roughness eval-
uation (Patel et al., 2012). Each of these results leads to the
postulation that measures that quantify the temporal enve-
lope of an acoustic stimulus spanning a range of amplitude
modulation frequencies may provide useful predictions of
vocal roughness.

While acoustic correlates of voice quality may be
elusive, Shrivastav and colleagues (Shrivastav, 2003;
Shrivastav & Sapienza, 2003) pointed out that objective
predictors of the auditory perception of voice quality may
require nonlinear transformations analogous to those that
occur in the auditory system as the sound is transformed
from an acoustic waveform that enters the outer ear to a
neural code that leads to a given perception. Accordingly,
computational models of auditory processing have been
used to process the vocal acoustic signal and the outputs
of such models have resulted in strong correlations with
auditory-perceptual evaluation of vocal attributes. These
include a bio-inspired model of pitch strength that corre-
lates strongly with breathiness (Eddins et al., 2016) and a
bio-inspired model of the auditory perception of sharpness
that correlates strongly with perceived vocal strain (Anand
et al., 2019). Here, we hypothesized that a bio-inspired
model of auditory temporal envelope processing may be
used to accurately predict the perception of vocal roughness.

The temporal modulation filter bank model first
described by Dau et al. (1997a), revised several times
since, is a strong candidate for predicting vocal roughness
as it has produced accurate predictions of the most com-
prehensive set of auditory-perceptual phenomena to date.
In this report, we have adapted the most recent version of
that model (Majdak et al., 2021) in an effort to establish
an objective correlate to perceived vocal roughness.
Briefly, the model includes a filter bank in the audio fre-
quency domain that mimics cochlear tonotopicity. This fil-
tering is followed by rectification analogous to hair-cell
transduction and nonlinear adaptation mirroring physio-
logical damping. Subsequently, the rectified and damped
output of each audio-frequency filter is processed by a sec-
ond filter bank in the temporal modulation domain that
reflects the ensemble characteristics of auditory midbrain
tuning to temporal envelopes. Model output is analogous
to the internal representation of the temporal envelope
within the central auditory system.

The purpose of the current investigation is to evalu-
ate the ability of an auditory temporal modulation filter
bank model to predict the auditory perception of rough-
ness in a set of sustained vowels that were selected to
be primarily rough with minimal breathiness and
strain. Perception was measured using a single-variable
t al.: Predicting Vocal Roughness Using an Auditory Model 2749
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matching task (i.e., Patel et al., 2012), model output
was computed, and model output and perceptual judg-
ments were compared.
Method

Stimuli

Voice Stimuli
Sustained /ɑ/ recordings from 10 individuals (seven

women and three men; Mage = 59.9 years, range: 27–
85 years) spanning a wide range of roughness (from least
to most roughness) were selected using stratified random
sampling (Shrivastav et al., 2005) from the University of
Florida Dysphonic Voice Database. The individuals had
various voice disorders including vocal nodules, paralysis,
laryngeal cancer, dystonia (abductor), granuloma, papil-
loma, presbyphonia, muscle tension dysphonia, and glottic
and subglottic stenosis. One individual had a thyroid
tumor. Selected recordings had stable fo contours and
were primarily rough with minimal breathiness or strain.
These criteria were chosen to increase the probability that
perceptual judgments could be limited to the roughness
percept. From the original recordings, the central 500-ms
portion was excised and downsampled to 24414 Hz to
match the hardware requirements for the perceptual
experiment.

Comparison Sounds
The comparison sound was used as the comparison

to the natural /ɑ/ vowel samples in the matching task that
was designed to estimate perceived roughness. The com-
parison sound consisted of a sawtooth waveform mixed
with noise. Prior to mixing, both stimuli were low-pass fil-
tered to have a spectral tilt of −12 dB/octave. The combi-
nation, sawtooth + noise, had a sawtooth-to-noise ratio of
20 dB, which achieved a more natural speech-like quality.
The fo of the sawtooth was set to 151 Hz. The filter slope
and fo were based on the average spectral slope and fo of
a set of dysphonic voices in the Massachusetts Eyes and
Ear Infirmary (MEEI) Disordered Voice Database (MEEI
Voice and Speech Laboratory, 1994). To introduce ampli-
tude fluctuation, which is perceived as roughness (Eddins
et al., 2015; Fastl & Zwicker, 2007), the sawtooth-plus-
noise complex was amplitude modulated during the
matching task with a sinusoidal function having a fre-
quency of 25 Hz and raised to the fourth power. This pro-
duced a waveform shape with relatively sharp peaks and
broad valleys. By altering the modulation depth, m,
expressed in dB as 20 log10(m), this comparison sound has
been shown to produce a range of perceived roughness
values wide enough to exceed the range required to match
dysphonic voices (Eddins & Shrivastav, 2013). Following
2750 Journal of Speech, Language, and Hearing Research • Vol. 65 •
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amplitude modulation, the root-mean-square (RMS) ampli-
tude of each comparison sound waveform was normalized
to a constant RMS value.

Single-Variable Matching Task

The auditory-perceptual task chosen for this experi-
ment was a single-variable matching task where the single
independent variable parameter was amplitude modulation
depth. On each trial of the matching task, listeners heard
the target sound (voice sample) followed by a 500-ms
silent interval and then by a comparison sound (synthetic
waveform described above). Simultaneous with sound pre-
sentation, a graphical user interface (GUI) was displayed
on the computer monitor in front of the listener. The GUI
included three buttons labeled “increase fluctuation,”
“decrease fluctuation,” and “equal fluctuation.” When lis-
teners perceived the roughness of the comparison sound to
be less than the perceived roughness of the target sound,
they selected the “increase fluctuation” button via mouse
click. This resulted in an increased amplitude modulation
depth of the comparison sound on the next trial. When
they perceived the roughness of the comparison sound to
be greater than the perceived roughness of the target
sound, they selected the “decrease fluctuation” button.
This resulted in a decreased amplitude modulation depth
on the next trial. When the point of subjective equality
was reached, they selected the “equal fluctuation” button.
Prior to testing, listeners were instructed to focus only on
the fluctuation or roughness of each sound and to ignore
other percepts such as pitch, loudness, timbre, breathiness,
strain, and vowel identity.

For each voice stimulus, each subject produced 10
perceptual matches based on five descending series and
five ascending series of trials as described by Patel et al.
(2012). For descending series, the initial modulation depth
was −5 dB, which had a perceived fluctuation that
exceeded any dysphonic voice, resulting in an initial
response of “decrease fluctuation.” For ascending series,
the initial modulation depth was −30 dB, which had a per-
ceived fluctuation that was less than any dysphonic voice,
resulting in an initial response of “increase fluctuation.”
Following each response, the amplitude modulation depth
was decreased or increased in 2-dB steps until a perceptual
match was indicated. By averaging the five descending and
five ascending runs, hysteresis associated with the adaptive
tracks was averaged out and a stable matching threshold
(roughness matching value) was obtained.

The matching task was chosen because, compared
with other perceptual tasks, such as visual analog scales
or magnitude estimation, a matching task can minimize
the effects of context and internal biases and provides
more reliable perceptual measurement (Kreiman &
Gerratt, 1998, 2005; Patel et al., 2010). The reliability of
2748–2758 • August 2022
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the perceptual measure was particularly important in this
experiment because perceptual measures were used to
evaluate the validity of possible acoustic correlates or
model predictions of perceived vocal roughness.

Instrumentation
The Tucker-Davis Technologies (TDT) SykofizX

software application was used to load from disk target
voice samples from stored audio files and to compute the
required comparison sound for each trial. The software
controlled the stimulus presentation, the subject interface,
and response collection. A TDT real-time processor
(Model RZ6) converted the digital files to analog signals
that were routed to a programmable attenuator (TDT
PA5) and headphone buffer (TDT HB6) and delivered to
an Etymotic ER-2 insert earphone at a calibrated level of
85 dB SPL.1

Listeners
Fifteen participants (14 women and one man) rang-

ing in age from 19 to 37 years (Mage = 23.7 years) were
recruited as listeners. All listeners had pure-tone thresh-
olds less than 25 dB HL at frequencies of 125, 250, 500,
1000, 2000, 4000, and 8000 Hz (ANSI, 2010). Listeners
were native speakers of American English and had no pre-
vious training in voice quality evaluation. All listeners
consented to participate according to procedures approved
by the University of South Florida biomedical institu-
tional review board (Protocol Pro00012381) prior to
engaging in study activities and were paid an hourly rate
($12 USD) for their participation.
1Each digital vowel stimulus waveform (500 ms) was digitally scaled
prior to digital-to-analog (D/A) conversion, setting the RMS level to
−6 dB FS. Prior to level calibration, each vowel waveform was dupli-
cated and concatenated to extend the duration to 4 s. Analog stimuli
were subsequently attenuated by a vowel-specific attenuation value
using an external digitally programmable attenuator (TDT PA5) to
achieve a sound pressure level of 85 dB SPL measured as described
below.
Comparison sound waveforms (500 ms) were digitally scaled prior

to D/A conversion, setting the RMS level to −10.4 dB FS. Prior to
level calibration, the waveform was duplicated and concatenated to
extend the duration to 4 s. Analog stimuli were subsequently attenu-
ated by a constant value, using an external digitally programmable
attenuator (TDT PA5), to achieve a sound pressure level of 85 dB
SPL measured as described below.
Sound level measurements involved connecting the ER-2 insert

phone to its corresponding foam ear tip and inserting the eartip into
a Zwislocki dB 100 ear simulator (Bruel & Kjaer) fit with a ½ pres-
sure microphone (G.R.A.S., Model 40AG) connected to a preampli-
fier (G.R.A.S, Model 26AK). The preamp was routed to a power
module (G.R.A.S., Model 12AA), the output of which was measured
with a volt meter (Fluke, Model 45). The sound pressure level was
determined relative to a reference voltage established with a calibra-
tor (Bruel & Kjaer, Model 4230) connected to the ½-in. microphone,
preamplifier, and power module circuit.

Park e
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Task Familiarization
Prior to performing the matching experiment, lis-

teners were first familiarized with the matching task using
synthetic target sounds identical to the comparison sound
with fixed modulation depths of either 0, −5, −10, or
−15 dB. The order of the target stimuli was pseudoran-
domized for each listener, but the stimulus with the modu-
lation depth of −15 dB, which contained relatively little
modulation depth, was not placed first for any listener in
order to reduce confusion in the first few trials. During task
familiarization, the experimenter provided verbal feedback
and additional instruction if listeners had difficulty match-
ing the comparison sound to the target stimulus.

After completing the familiarization task with four
synthetic stimuli, listeners performed additional practice
tasks with two natural vowel /ɑ/ samples that were not
part of the 10 experimental stimuli. This step ensured that
listeners were able to perform the matching task appropri-
ately with natural voices. One sample was rough, and the
other was less rough.

Experimental Task
The experimental matching task was performed with

the 10 natural /ɑ/ stimuli. The order of the 10 stimuli was
pseudorandomized for each listener via MATLAB (The
MathWorks, Inc) algorithm. Listeners completed the
matching task for two target stimuli at a time followed by
a short break. The order of the stimuli and initial indepen-
dent variable value also was pseudorandomized within a
set by SykofizX software. Each set took approximately
15–20 min. Listeners completed data collection in two to
three sessions lasting no more than 2 hr including breaks.

Auditory Temporal Modulation Filter Bank
Model Processing

The auditory filter bank model chosen for use in this
study was described by Dau et al. (1997a) and was chosen
because of the ability of the model to predict a wide vari-
ety of data related to the perception of the temporal enve-
lope of an acoustic stimulus. The model also has been
used to predict a variety of simultaneous and masking
experiments (e.g., Dau et al., 1997b) as well as other
auditory-perceptual abilities. This simple model requires
no optimization or training on any preliminary data sets.
As shown in Table 1, the model consists of the following
processing steps: (a) a basilar membrane stage, consisting
of a linear gammatone filterbank (Patterson et al., 2003)
to separate audio frequency bands for subsequent process-
ing; (b) a hair-cell transduction stage, modeled by a half-
wave rectifier and low-pass filter at 1000 Hz per audio fre-
quency channel; (c) an auditory nerve stage, modeled by
frequency-dependent nonlinear adaptation (Münkner, 1993);
and (d) a modulation filterbank to account for sensitivity to
t al.: Predicting Vocal Roughness Using an Auditory Model 2751
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Table 1. Description of the processing steps of the auditory temporal modulation filter bank model.
amplitude changes in the temporal envelope of the acoustic
waveform. Each stage of the auditory front end (Dau et al.,
1997a) was programmed in MATLAB using open-source
code from the auditory modeling toolbox version 1.0
(Majdak et al., 2021). In the current implementation, the
gammatone filterbank (Step 1) consisted of 32 channels
with center frequencies ranging from 132 to 12207 Hz
spaced in equal steps of equivalent rectangular bandwidth
(Moore and Glasberg, 1996). For any given noise or speech
stimulus, the output of the peripheral model produces 12
arrays, one for each modulation filter (Step 4) with filter
center frequencies ranging from ~5 Hz to 1000 Hz (see
Table 2). After auditory processing of each stimulus wave-
form, the model returns a matrix of filter outputs as a func-
tion of time. Standard deviations of the outputs from Mod-
ulation Filters 5, 6, or 7 were computed and used for statis-
tical analysis to test our primary hypothesis. Accordingly,
these values will be denoted EnvSD5, EnvSD6, or EnvSD7.
Candidate Modulation Filters 5, 6, and 7 were chosen from
2752 Journal of Speech, Language, and Hearing Research • Vol. 65 •
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among the full modulation filter bank because the center
frequencies of these filters (23, 39, and 64 Hz) were in the
range of the modulation frequencies that evoked greatest
perceived roughness in human voice samples (Eddins et al.,
2015) and correspond to the range amplitude modulation
frequencies that resulted in the maximum roughness sensa-
tion in a broadband carrier (Fastl & Zwicker, 2007).

Other Acoustic Measures

In addition to the envelope standard deviations
described above, we also obtained estimates of pitch
strength and the CPPS from each voice sample to com-
pare these additional acoustic measures with the envelope
standard deviations from the auditory filter bank model
described above. Pitch strength is the salience of pitch sen-
sation (Shrivastav et al., 2012), and CPPS is the first ceps-
tral peak amplitude normalized to the smoothed cepstral
amplitudes of background noise (Hillenbrand et al., 1994;
2748–2758 • August 2022
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Table 2. Center frequencies and bandwidths of the band pass fil-
ters that make up the auditory temporal modulation filter bank
(Dau et al., 1997a).

Modulation filter Center frequency (Hz) Bandwidth (Hz)

1 N/A 2.5*
2 5 5
3 10 5
4 13.9 6.9
5 23.1 11.6
6 38.6 19.3
7 64.3 32.2
8 107.2 53.6
9 178.6 89.3
10 297.7 148.8
11 496.1 248.1
12 826.9 413.5

Note. N/A = not applicable.

*Filter 1 was a low-pass filter, so the bandwidth also denotes the
filter cutoff frequency.

Figure 1. Mean roughness matching values for 10 stimuli across
15 listeners. Error bars indicate 95% confidence intervals.
Maryn & Weenink, 2015). Pitch strength was estimated
from a sawtooth waveform inspired pitch estimator with
auditory front end (Camacho, 2012). CPPS was obtained
using the built-in function in PRAAT (Boersma &
Weenink, 2021) acoustic analysis software using the proto-
col described by Watts et al. (2017).

Statistical Analysis

Model Development
Intra- and interrater reliability of the matching task

were estimated as intraclass correlation coefficient (ICC)
in MATLAB. Simple linear regression models were com-
puted in SPSS (Version 27, IBM Corp.) to evaluate the
relationship between roughness matching values and the
computational measures. The response variable in the
models was the roughness matching value in dB amplitude
modulation depth (dB dAM). The predictor variables were
the EnvSD5, EnvSD6, and EnvSD7, pitch strength, and
CPPS, and simple linear regression models were analyzed
for each predictor variable. The significance level was
adjusted to .01 with Bonferroni correction (p = .05/5 pre-
dictors = 0.01) to reduce the probability of a Type I error.
Effect sizes of the significant predictors were estimated as
Cohen’s f 2.

Evaluation of Model Prediction Accuracy
We used the linear regression equation with the

highest r2 to evaluate the ability of the model to predict
perceived roughness for novel data. A second set of 10
voices across a wide range of primary roughness was
selected from the University of Florida Dysphonic Voice
Database (five women and five men; Mage = 62 years;
range: 47–73 years). Thirty new listeners (25 women and
Park e
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five men; Mage = 23.6 years; range: 19–37 years), who met
the same criteria as the original listeners, were recruited
and performed the same single-variable matching task
described above. Perceived roughness of the 10 new voice
stimuli was obtained from the matching task, and percep-
tual vocal roughness of the 10 new voice stimuli was pre-
dicted based on the linear regression equation obtained
with the original data set. Pearson’s r was computed in
SPSS to evaluate the relationship between the perceived
and predicted roughness.
Results

Perceived vocal roughness is shown in Figure 1 with
voice sample on the abscissa and perceived roughness on
the ordinate as estimated from the single-variable match-
ing task and quantified in units of dB dAM. Symbols
reflect mean matching values for the 15 listeners with
error bars indicating 95% confidence intervals. Stimuli are
ordered in terms of perceived roughness from least to
most rough. The range of matching values corresponds
closely to those reported by Patel et al. (2012).

Listener Reliability

Intrarater reliability (ICC [2, k], absolute agreement)
for the 15 listeners was high, ranging from .87 to .99 with
a mean of .96. Interrater reliability (ICC [2, k], consis-
tency) among the 15 listeners also was high with a value
of .92.

Simple Linear Regression Models

Individual simple regression models for roughness
matching values were computed for each computational
t al.: Predicting Vocal Roughness Using an Auditory Model 2753
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Figure 2. A scatter plot and a linear fit of mean roughness match-
ing values as a function of log10(EnvSD7). Error bars indicate 95%
confidence intervals.
measure and the temporal modulation filter bank model
output. Table 3 presents r2 and associated statistical values
for each regression model. The effect size was calculated
for each statistically significant predictor. The EnvSD7

was a significant predictor of perceived vocal roughness,
accounting for 80% (r2 = .80) of the variance in the per-
ceptual data and had a very large effect size (f 2 = 4.00).
The EnvSD5 and EnvSD6 metrics were not significant pre-
dictor variables. Furthermore, subsequent to a log-
transform of the EnvSD7, log10(EnvSD7), a simple linear
regression model with the log-transformed data accounted
for 86% (r2 = .86) of the variance in the perceptual data
(F1,8 = 49.6; p < .001; f 2 = 6.14). The regression equation
of perceived roughness with log10(EnvSD7) as a predictor
is described in Equation 1:

Predicted Roughness dB dAM½ � ¼ 19:32

� log10 EnvSD7ð Þ þ 0:76

(1)

Figure 2 shows the relationship between the log-
transformed EnvSD7 metric and perceptual roughness
matching values. As hypothesized, positive correlations
indicated that stimuli with higher envelope standard devia-
tion were perceived to have higher roughness than stimuli
with lower envelope standard deviation. None of the other
candidate acoustic metrics was a significant predictor of
roughness matching values (each accounted for less than
50% of the variance in the perceptual data).

Example of Model Predictions

For this second listening experiment to evaluate
model prediction accuracy, intrarater reliability (ICC
[2, k], absolute agreement) ranged from .87 to .99, with a
mean of .97, whereas interrater reliability (ICC [2, k],
absolute agreement) was .98. Figure 3 displays perceived
vocal roughness of the 10 new voice stimuli resulting from
the matching task (dB dAM) on the ordinate and predicted
perceptual roughness from Equation 1 on the abscissa. Per-
ceived roughness and predicted roughness were strongly
and significantly correlated (r = .84, p = .001), accounting
for approximately 71% (r2 = .71) of the variance for this
new set of stimuli. The roughness of most samples was
Table 3. Coefficient of determination (r2) and statistical values for each lin

Acoustic measure r2 F1,8 Coef.

EnvSD5 .36 4.47 295.26
EnvSD6 .50 7.82 125.60
EnvSD7 .80 30.94 68.98
Pitch strength .32 3.82 −15.11
CPPS .07 0.59 −0.30

Note. Bold value indicates significant results (p < .01). Coef. = coefficient

2754 Journal of Speech, Language, and Hearing Research • Vol. 65 •
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well predicted by Equation 1 except for the two roughest
samples (mean perceived roughness = −12.0 dB dAM and
− 13.6 dB dAM) underestimated by the equation.
Discussion

This study examined the relationship between per-
ceived rough voice quality and envelope fluctuation mea-
sures obtained from a bio-inspired auditory model of
temporal modulation processing. Perceived roughness of
the 10 voice samples in a wide range of primary rough-
ness was obtained from a single-variable matching task.
Envelope standard deviations were computed from the
output of specific modulation filters with low modula-
tion frequencies (23 Hz–64 Hz) of the auditory model.
The simple regression model of perceived roughness
reported here, with a predictor based on the log-
transformed EnvSD7 resulted in a strong (r2 = .86) coeffi-
cient of determination.

The results of this study are in line with previous
studies that observed high correlations between voice qual-
ity perception and acoustic measures obtained from bio-
inspired computational auditory models. Shrivastav and
Sapienza (2003) reported that partial loudness estimates
ear regression model.

SE coef. t p Effect size (f 2)

139.71 2.11 .07
44.90 2.80 .02
12.46 5.56 < .001 4.00
7.73 −1.96 .09
0.38 −0.77 .47

; SE = standard error; CPPS = smoothed cepstral peak prominence.

2748–2758 • August 2022
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Figure 3. A scatter plot and a linear fit of mean perceived rough-
ness (roughness matching values) of the new 10 voice samples as
a function of predictive roughness estimated with Equation 1. Error
bars indicate 95% confidence intervals.
based on the periodic signal and noise computed by an
auditory model front-end yielded a stepwise regression
model of perceived breathiness that accounted for 85.2%
of the variance. Eddins et al. (2016) also reported a strong
linear regression model of perceived breathiness (r2 = .87)
using the pitch strength estimate obtained through a saw-
tooth waveform inspired pitch estimator with an auditory
front-end (Camacho, 2012). In the case of strained voice
quality, Anand et al. (2019) reported that spectral energy
distribution measures obtained from an auditory model,
combined CPP computed from the input waveform,
resulted in a stepwise regression model of perceived strain
that accounted for 77%–79% of the variance.

The current investigation, along with these previous
studies, demonstrates that signal processing of raw acous-
tic signals using bio-inspired auditory processing front
ends can be used to form models that effectively predict
voice quality perception and thus highlight the potential
for such measures to serve as objective measures of voice
quality. The high correlations observed between voice
quality perception and the output of bio-inspired models
of auditory perception likely reflect the fact that such
signal-processing front ends capture the essence of various
nonlinear processing properties and transformations that
occur in the peripheral auditory system during the
auditory-perceptual process (Dau, 2008; Shrivastav &
Sapienza, 2003). In contrast, conventional objective indi-
ces of vocal acoustic signals do not include those transfor-
mations. As a class, acoustic analyses of voice may be
very useful measures for some purposes; however, it is not
surprising that inclusion of processing steps related to the
Park e

Downloaded from: https://pubs.asha.org University of South Florida on 01/03/
perception of sound may improve correspondence between
objective measures and perceptual judgments. Such mea-
sures typically are more computationally expensive than
conventional voice measures and are not commonly
included in commercially available software.

Specifically, the auditory temporal envelope process-
ing model used in this study contains a temporal modula-
tion filter bank. This model extracts specific temporal
envelope modulation frequencies at the output of various
audio-frequency channels (Dau et al., 1997a), thereby
approximating the internal representation of the temporal
envelope by the auditory system, and in so doing appears
to capture the primary characteristics that give rise to var-
iations in perceived roughness magnitude. The modulation
filter bank is analogous to the inherent tuning of single neu-
rons and families of neurons in the central auditory system,
from the cochlear nucleus up to the auditory cortex, to dif-
ferent amplitude modulation frequencies (e.g., Langner,
1992). Thus, each modulation filter represents an ensemble
of cells that are tuned to the modulation frequencies passed
by that filter. By having the modulation filter bank, the
model can estimate the degree of envelope modulation at
different modulation frequencies, which were observed to
be useful in predicting vocal roughness in this study.

In the analyses reported here, the output from Mod-
ulation Filter Number 7 best predicted vocal roughness
associated with the sustained vowel recordings in this
study. The center frequency of this filter is 64 Hz with a
bandwidth of 32 Hz. The modulation frequency range of
this filter is similar to the frequency (~70 Hz) that resulted
in the maximum perceived roughness associated with
amplitude modulation superimposed on a broadband
noise and 1000 Hz tone carriers, as reported by Fastl and
Zwicker (2007). This range is slightly higher than the
modulation frequency range (25–50 Hz) that was judged
as most rough when amplitude modulation was applied to
125 and 250 Hz tones (Fastl & Zwicker, 2007) and natural
adult normophonic voice samples (Eddins et al., 2015).
One possible reason for this discrepancy in the modulation
frequency range may be related to differences in the com-
plexity of the temporal envelope, with more complex enve-
lope fluctuations in natural rough voices than the simple
envelope modulation function applied in previous studies.
The sound samples of Fastl and Zwicker (2007) and
Eddins et al. (2015) were applied with periodic amplitude
modulation at a constant modulation frequency. Natural
rough voices are likely to contain more random and irreg-
ular temporal fluctuation than periodic amplitude modula-
tion applied in the previous studies. However, the current
results agree with the results from previous studies in that
roughness is associated with temporal envelope fluctua-
tions at relatively low modulation frequencies.

Shimmer, a traditional measure of amplitude perturba-
tion, was observed to have a weak to moderate correlation
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with perceived roughness in previous studies (Barsties v.
Latoszek, De Bodt, et al., 2018; Bhuta et al., 2004). Shim-
mer estimates period-to-period amplitude perturbation.
This period-to-period amplitude perturbation reflects the
faster temporal fine structure of the waveform rather than
the slower temporal envelope associated with the amplitude
modulation frequencies of focus in this study. The fact that
envelope frequencies in the 25–75 Hz range are more
strongly related to roughness than higher envelope frequen-
cies (Eddins et al., 2015; Fastl & Zwicker, 2007) may
explain why shimmer has been not strongly correlated with
perceived roughness previously. In addition, shimmer
requires accurate estimation of fo in order to be reliable,
which is challenging in highly dysphonic voices (Mehta &
Hillman, 2008).

Our results indicating that CPP and pitch strength
were not significant predictors of perceived roughness are
consistent with the notion that temporal envelope fluctua-
tions may be a stronger constituent of perceived roughness
than signal periodicity, a feature well-captured by CPP
and pitch strength estimates. Both CPP and pitch strength
are related to the degree of signal periodicity (Hillenbrand
et al., 1994; Shrivastav et al., 2012) and were strongly cor-
related with perceived breathiness (Eddins et al., 2016;
Hillenbrand et al., 1994). Aperiodicity of the signal has
been also associated with perceived roughness (Barsties v.
Latoszek, Maryn, et al., 2018; de Krom, 1995; Kempster
et al., 2009), but many measures such as jitter, harmonics-
to-noise ratio, and CPP, which are related to signal peri-
odicity, have been only weakly to moderately correlated
with perceived roughness (Barsties v. Latoszek, De Bodt,
et al., 2018; Bhuta et al., 2004; de Krom, 1995; Heman-
Ackah et al., 2002), similar to our results of CPP and
pitch strength. Additionally, our voice samples were
selected for being primarily rough with minimal breathi-
ness and strain. The strong relation of perceived roughness
with envelope fluctuations may indicate that primary
vocal roughness is more strongly related to temporal enve-
lope fluctuations than to signal periodicity. However, sig-
nal periodicity and other acoustic factors such as spectral
fluctuations can contribute to perceived roughness to some
extent. The two most rough samples in our example of
model prediction were underestimated by the model equa-
tion and may have other acoustic factors affecting their
perceived roughness besides envelope fluctuations.

Limitations

This study analyzed perceived roughness in record-
ings of sustained vowel productions. Perceptual and
acoustic evaluations of sustained vowels are routinely per-
formed in voice clinics but may lack ecological validity.
Prediction of perceived roughness in connected speech is
likely to be more complicated than sustained vowels, and
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future studies can investigate possible application of tem-
poral fluctuation measures in connected speech. We also
purposely chose our samples in a range of primary rough-
ness without other voice qualities as much as possible.
Natural dysphonic voices often present different voice
qualities together, and thus prediction strength of envelope
measures in this study may decrease in dysphonic voices
covarying with other voice qualities. However, the pur-
pose of choosing primarily rough voice samples was to
investigate a direct relationship between perception and
temporal fluctuation measures from the auditory model
without influence of any other voice qualities. We believe
that this purpose was achieved as we obtained a very
strong regression model of perceived roughness in this
study, and the results provide valuable insight into charac-
teristics of vocal roughness for future studies of voice
quality perception and evaluation. Future studies can eval-
uate the prediction ability of the temporal fluctuation
measures to dysphonic voices samples with a variety of
other voice qualifies.

Although we have investigated amplitude modula-
tion for predicting perceived roughness, frequency modu-
lation also has been observed to result in perceived rough-
ness in previous studies (Barsties v. Latoszek, De Bodt,
et al., 2018; Fastl & Zwicker, 2007). Frequency modula-
tion produces cycle-by-cycle variation in the period (the
inverse of frequency) of the stimulus, whereas the ampli-
tude envelope remains unchanged relative to the original
carrier amplitude envelope. With frequency modulation,
however, if the frequency excursions extend beyond the
width of an auditory critical band or auditory filter band-
width and the rate of those frequency excursions is greater
than about 10 Hz, the output of that critical band fluctu-
ates at the rate of frequency modulation. In that case, the
frequency modulation is actually perceived as amplitude
modulation (Moore & Sek, 1994; Zwicker, 1952). Thus,
we suspect that the degree of amplitude modulation esti-
mated in this study may have already reflected some
degree of frequency modulation in the voice stimuli.
Future studies can further investigate the relationship
between amplitude and frequency modulation and their
contributions to perceived roughness.
Conclusions

In this study, we illustrated that the output of a bio-
inspired model of auditory temporal envelope perception
is strongly correlated with the perception of vocal rough-
ness and that the function representing that relationship
can be used to predict the perceived vocal roughness of a
novel stimulus set as perceived by novel listeners. Perceived
roughness was significantly predicted by the degree of enve-
lope modulation, estimated from the auditory model with
2748–2758 • August 2022
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modulation filter bank, and the output from a modulation
filter with center frequency at 64 Hz best predicted per-
ceived roughness. One possible reason for our results may
be that our perception is based on a number of transfor-
mations of the acoustic signal as it is processed by the
auditory brain prior to generating a percept. Future work
is needed to combine predictors of different voice qualities
into a single comprehensive model.
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